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ABSTRACT

A formalism is developed for temperature-dependent, self- consistent

phonons in quantum solids with defects. Lattice vacancies and interstitials

in solid helium and metallic hydrogen, as well as electronic excitations in

solid helium, are treated as defects that modify properties of these systems.

The information to be gained from the modified phonon spectrum is

discussed.
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I. INTRODUCTION

In this report we are concerned with phonon properties of quantum

solids with defects. We shall mainly be interested in two substances:

(1) electronically excited solid helium, and (2) metallic hydrogen. The class

of defects that will be considered consists of electronic excitations in solid

helium and lattice imperfections (vacancies and interstitials) in both solid

helium and metallic hydrogen. The two substances considered here are of

great current interest, both scientifically and because of potential practical

applications. In particular, the long lifetime (-2. 3 h) and the high excitation

energy (-20 eV) of the metastable 2 3 S state of atomic helium suggest the

possibilities that high concentrations of these states might be achieved, under

suitable circumstances, in the liquid and solid phases of helium, and that

they could be utilized for storing energy (Ref. 1). The collisional quenching

of the excited 2 3S state is expected to be less severe in the solid than in the

liquid, thereby singling out solid helium for primary consideration.

The existence of metallic hydrogen was first proposed by Wigner and

Huntington (Ref. 2). It is presently believed that the bulk of the interior of

Jupiter is metallic hydrogen, most likely in the liquid phase. An added

impetus for the study of metallic hydrogen is the expectation that it is a high-

temperature (100 to 300 K) superconductor (Refs. 3 and 4).

Quantum solids are characterized by the fact that the zero-point

motion of constituent atoms occurs over a sizeable portion of the atomic

cell. It is well established that solid helium is quantum. Although metallic

hydrogen has also been assumed in the past to be quantum, recent work by

Caron (Ref. 5) seems to indicate that this assumption is not entirely proper.

It appears that metallic hydrogen falls somewhere in between classical and

quantum solids; we shall refer to it as semiquantum. Special techniques

have been developed to treat the highly anharmonic quantum solids, since

standard approaches for classical solids, which are based on the harmonic

approximation, simply break down for quantum solids, as manifested by

phonon frequencies becoming imaginary (Ref. 6). Although classical

methods may be marginally valid for metallic hydrogen, it is felt safer to

treat it by quantum-solid techniques, as we shall do in this report.
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As a result of the large zero-point motion of atoms in quantum solids,

-c-rt ain--1atti-c-e-d-ef-ects,-suchs-as-va-cni-es-and-interstita--s--aree-a-s i-ly

excited, even at zero temperature. These defects are expected to have a

marked effect on various physical properties of a quantum solid, especially

on those that depend on the lattice structure. In particular, the phonon

properties are expected to be strongly influenced by the defects. It is the

primary purpose of this report to discuss phonons in quantum solids with

defects, in the context of solid helium and metallic hydrogen. In the case of

metallic hydrogen, the important defects we shall consider are vacancies

and interstitials. In the case of solid helium, our primary interest is elec-

tronic excitations, treated as lattice imperfections; however, our discussion

will be sufficiently general to include also the "normal" lattice defects,

vacancies and interstitials.

Most of the work on defects in lattices has been done for classical

solids (Ref. 7). Theoretical studies of defects in quantum solids were initi-

ated around 1970, and have been mostly concerned with two problems. The

first, in analogy to the classical case, is concerned with determing the mod-

ifications to the phonon spectrum due to various types of defects. Varma

(Ref. 8) considered a single isotopic substitution, and Aksenov (Ref. 9)

studied finite concentrations of static vacancies. Our intent is to generalize

the approaches of these papers to treat situations relevant to electronically

excited helium and metallic hydrogen at finite temperatures. The second

problem that has been studied in the past is concerned with using a

collective-excitation approach to treat lattice defects and their motion in

quantum solids (Refs. 10 through 13). In this report we shall not treat this

problem.

II. SELF-CONSISTENT PHONONS IN A PERFECT QUANTUM SOLID

To find the phonon spectrum of a system with a not too high defect

concentration it is very convenient to use the phonon spectrum of the corre-

sponding perfect and undistorted crystal. The periodicity of the latter can

be used advantageously to define normal coordinates and greatly reduce the

diagonalization problem. We review here the basic results on self-

consistent phonons (for exhaustive reviews, see Refs. 14 through 16) in a
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form that will be convenient for treating the defect problem. To introduce

the notation we first briefly summarize the derivation of phonons in a per-

fect, classical system (Ref. 17).

A. CLASSICAL LATTICE DYNAMICS

The basic assumption of small vibrational amplitudes allows one

to perform a series expansion of the potential in the displacements and to

truncate the series after the dominant, quadratic terms. The original

Hamiltonian is then replaced by the approximate, harmonic Hamiltonian

h 2 1 ia 2 jPia ic
ia ia

jP

where

ia a2V

aui au3.p eq.

are the force constants derived from the original potential, and a, P = x,y,z.

The classical equations of motion of this Hamiltonian are, of course, linear:

M. ii.U ia u (2)

jP

The index i (or j) counts the atoms and is shorthand for the pair m1j. (or nv),

where the Roman letter denotes the unit cell and the Greek letter a site in

the. cell (allowing for more generality than a Bravais lattice). The system

shown in Eqs. (2) can be greatly uncoupled by assuming the following space

and time dependence of the displacements:

U (k) i[kRmR - w(k)t]
u = e (3)

JPL Technical Memorandum 33-701 3



where the wave vector k reflects the lattice periodicity. Note that masses

M d -not i-epenrd-on the cellindex m. -The system_ shown in-Eqs. TZ) now

becomes

w2(k) U (k) = D (k) U (k) (4)

where

(k)  m ik (R -R )
D -(k) - e (5)

V 
niM v n

the so-called dynamic matrix, is the spatial Fourier transform of the force

constant matrix. Let r denote the number of sites per unit cell. Compar-

ing Eqs. (2) and (4), we see that the explicit introduction of lattice periodic-

ity has greatly simplified the problem: while Eqs. (2) are a system of 3rN

coupled equations (N being the number of unit cells in the system, practi-

cally infinity), Eqs. (4) consist of N systems (one for each k) of only 3r

coupled equations each. To each k there correspond 3r roots, denoted by

X = 1, .. , 3r. The corresponding eigenvectors of the dynamic matrix,

e a(kX), the so-called polarization vectors, fulfill the orthogonality and

closure relations

(6)

e (kX) evp (kX) = 6

Once the dynamic matrix has been diagonalized (which is easily done

because it is low dimensional), the harmonic Hamiltonian can be shown to

be completely diagonal in the normal coordinates Q(kX), related to the

atomic displacements by
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ik'R
u .1 e (k ) Q(kX) e mt

' kX
(7)

-ik-R

Q(kX) = e, (kk) umia e

m

Indeed, substitution in Expansion (1) gives

Hh = I (16(k)l 2 + ,(kXk) 2 Q(kXk) 2) (8)

kX

which is, as expected, the Hamiltonian of uncoupled harmonic oscillators.

This form is extremely important in the treatment of a quantum solid, since

it allows one to write down explicitly approximate wave functions of the solid.

B. VARIATIONAL PRINCIPLE

The basic idea of self-consistent phonons in quantum solids, for which

the atomic displacements are too large and hence the harmonic part of the

Expansion (1) breaks down even as a zeroth-order approximation for a pos-

sible perturbation treatment, has been to use a variational approach.

Instead of expanding, one is looking for the most general harmonic

Hamiltonian (Expansion 1) that would best approximate the given system in

some sense. The most common approach, systematically and successfully

developed by Koehler (Refs. 18 and 19), has been to regard the effective

force constants, or equivalent quantities, as variable parameters determined

by minimizing the ground-state energy with respect to them. The energy is

evaluated by averaging the given, anharmonic Hamiltonian over harmonic

oscillator wave functions. Consequent minimization gives a self-consistent

condition for the phonons, with the frequencies appearing not only explicitly

as in Eq. (4), but also in the dynamic matrix.

JPL Technical Memorandum 33-701 5



Because we are interested in temperature-dependent self-consistent
-- phon-ons -(-e-speci-a-lly fo-r m-etallic-hydr-og en)--we have to-repla-ce the groaund -

state energy by the corresponding thermodynamic quantity, the free energy

F, given by

e- F e -PEn H Tr e= e = Tr e-

n

where the summation is over all states of the system and P = i/kT. The

statistical operator, or density matrix, is given by

e-PH

Tr ePH

The thermodynamic average of an operator O is

<0> = Tr (pO) Tr (Oe PH
-PHTr (e - H

The extension of the zero-temperature, ground-state variational principle
to finite temperatures is the thermodynamic Gibbs-Bogolyubov principle

(for a proof and review see, for example, Ref. 20), which states that

F Ftrial F 0 + <H - H 0 >

Tr (H - H 0 ) e (9)

0 Tr e -H0

where H 0 is a zeroth order Hamiltonian, conveniently chosen as a

Hamiltonian for which the problem can be solved explicitly. For T = 0 the
first and last terms in Eq. (9) cancel and the principle reduces to the
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well-known variational principle. This variational principle will be used

now to derive temperature-dependent, self-consistent phonons.

C. SELF-CONSISTENT PHONONS

To obtain the self-consistent phonons we first evaluate the trial free

energy in Eq. (9) and then minimize it. The Hamiltonian is of the form

H =T+V

2 8 2  (10)

- 2  + 1 v (R - Rnv - unv 1)

mpa ml mi
nv

and the zeroth order Hamiltonian, Ho , is naturally chosen to be the har-

monic Hamiltonian Hh in Eq. (1), which has the advantage that all thermo-

dynamic qualities and averages can be evaluated explicitly. The kinetic

energy terms cancel, and we are left with

Ftrial = F 0 + <V - V0>

It should be noted that in the case of solid helium the potential V appearing

in Eq. (10) is not the usual interatomic potential (of the Lennard-Jones

variety), but an effective potential that incorporates short-range correlation

effects (Ref. 21). The point is that the potential that a pair of helium atoms

in the lattice see is drastically modified by the surrounding atoms, so that

the pair potential derived from gas data is a very poor description of the

interatomic forces in the solid. In the case of metallic hydrogen, V is the

screened ion-ion potential (Refs. 22, 5).

In terms of the normal coordinates (Eq. 7), which diagonalize the

harmonic Hamiltonian (Eq. 8), the free energy is additive and the density

matrix is multiplicative, and all necessary quantities are explicitly avail-

able for harmonic oscillators (see, for example, Ref. 23 or Ref. 24):

JPL Technical Memorandum 33-701 7



O k= sinh2kT ( 11)

kk kx

kx- IQ(kX) 2tg h

PO = PkX sinhWk e kx 2kT (12)

kX kx Tr sinh k-

The averages of V and V 0 are given by

1A(wk)) / - ( k) lakk2

0V0 = H/ H dQkX V e kk (13)

kh kx

<V0 >0 = wk ctgh 2kT (14)

kX

where

wkX w okX
A(wkX) -h tgh 2kT

The result of Eq. (14) is obtained by averaging the square of the displace-

ment of a single harmonic oscillator (see Eqs. 8 and 12). In the low-

temperature limit each term gives -hw/4, which is the potential energy

contribution to the zero-point energy. In the high-temperature limit, each

term contributes kT/2, the expected classical result.

The trial free energy is given by combining Eqs. (11), (13), and (14).

The resulting expression depends on all the o k X, which are obviously

related to the effective force constants in Eq. (1). It is convenient to regard

8 JPL Technical Memorandum 33-701



these frequencies as variational parameters, to be determined by imposing

the condition

trial 0 
(15)

This procedure is similar to that employed by Morley and Kliewer (Ref. 25)

to derive zero-temperature, self-consistent phonons. The algebra is some-

what long, but straightforward, and the result is

t kX kX 1 _1 a82 V__
0 2kT 2kT snh k k  ( kk -z T+1 -

sinh2 ZkT

or

2 8 2 V (16)

This is the basic result of the variational self-consistent phonon

approach, replacing second derivatives of the potential at equilibrium by

thermodynamic averages of the second derivatives over harmonic density

matrices. This system has to be solved self-consistently, as the thermo-

dynamic average depends on all the frequencies. To relate this result to

the corresponding classical result, Eqs. (4) and (5), we transform from

normal coordinates to atomic displacements by means of Eq. (7). The

result is formally similar to Eqs. (4) and (5) except that the dynamic

matrix now becomes

S(k) av e v m (17)

/0 MM uma anu n
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Both this and the classical dynamic matrix can be written in more

--det-ail,-specif-yi-ng-proper-ti es-of acoustic-and optic -modes,-by -writing-the_

potential as a sum of pair potentials, as follows:

a2v m[, nv
au m uc aunvP

2 mga nv2V
au u (18)

mla nv 2

mI, rp
Lu ru , m i = nv

rp

Substituting this into the dynamic matrix, we get

<> (k))
(  ik (R - R ) a2 r

P 0 / V P au au
rpv r p m0rp

(19)

D. EVALUATION OF THERMODYNAMIC AVERAGE

The last step is to evaluate the thermodynamic average of the second

derivative of the pair potential, and to reduce the multidimensional integral

to a form that can be calculated. This is achieved by Koehler's method

(Refs. 18 and 19) of expressing the density matrix Eq. (12) in terms of

atomic displacements (resulting in correlated Gaussians) and consequent

reduction of the multidimensional integral appearing in the thermodynamic

average to a three-dimensional one, which can be evaluated numerically.

We start by substituting Eq. (7) in Eq. (12), and Eq. (12) in Eq. (19), with
the result

2 GrPy u u
scr6 rpy Us-6

a 2V 1/2 v2 rpy
Im In 3Ndu) me

au au 3rN (uf au

(20)
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where the temperature-dependent correlation function is

rpyJ MpM kk _kX ik. (R - R p)
r6 N tgh ZkT ePy (kX) e (kX) e

kX

(21)

Next, since the second derivative depends on the coordinates of two

particles only, we can perform the integration over all coordinates but these

two. For this it is convenient to partition the matrix G and its inverse
-l

G-1 into a six-dimensional block involving the indices of particles mi, nv,

and the rest:

mV nv

G = nv G

The result of the integration is (Ref. 18)

m, nv (det h)/ m [,nv -uh ufdu
au au 3 d u u e

myLc m ) T m[Ia mP

where U is a six-dimensional vector consisting of the components of u

and u . Since G and G - are symmetric, h and h -  have the block
nv

structure

-1\
h = (T h-1 =

BTA DTC

with

-I -l

C = (A - BA 1 BT) , D = (BT - AB-IA)-

JPL Technical Memorandum 33-701 11



For central force potentials the integral can be further reduced by

introducing leative and center of mascs--o-ordinates

1 1
Um = R+-r, u R- r

m_ 2 nv 2

-1 1
uh u = 2R(C+D) R + r (C-D) r

The integration over R is readily performed:

a8 v 1/2 d 82v( -R +r) -- r(C-D)r
Um m, nv det(C-D) dr nv e

u iau 3 r ar
m mLp 0 (2T) a P

(22)

This form is useful if the three-dimensional matrix (C - D) can be related

to the correlation matrix G (Eq. 21). Some matrix manipulation shows that
-I

C - D = (A - B) -1. A and B are the diagonal and off-diagonal blocks of the

inverse of the correlation matrix G. Fortunately, the latter can be inverted

(despite its practically infinite dimension) by using the orthogonality and

closure properties of the polarization vectors. It is readily verified that

mla e  kX ik (Rn - R )
G-1 nvP M k 4M ctgh 2kT e a (kk) evP (kX) e (23)

-1
Defining the matrix F = (C - D) = A - B with elements F(mp, nv)ap

=(G- )m la - (G-l)m'a and collecting all the results, we obtain the self-
my4 nvP

consistent phonon scheme

2 e (kX) = I -6 ekR rp a m P e (kX) (24)

.Mrp M /M Um 0Um 0

12 JPL Technical Memorandum 33-701



a2 Zv(R + r) -1 rF-
m[, rp 1 d m[, rp e 2

u u a8r are
)-U- 0 V(2) 3 det F(mp,rp)

(25)

1 r" t khwk X
F(mpM kT ctgh- e (kk)

kx 11 p

Ie ik.(Rr -Rm)

x ~ (k) - e pp(k) e ik- (Rp - Rm) (26)

This is the self-consistent harmonic approximation in a form equiva-

lent to that of Gillis (Ref. 26), and will be used as a basis for treating the

defect problem.

III. SELF-CONSISTENT PHONONS IN AN
IMPERFECT QUANTUM SOLID

We formulate a scheme for computing self-consistent phonons in

quantum solids with defects in the expectation of applying it to systems such

as solid helium and metallic hydrogen, in which electronic excitations and

lattice imperfections are regarded as defects. The first system is of

interest in connection with the possibility of energy storage in metastable

excited states (Ref. 1). The phonon spectrum for metallic hydrogen was

evaluated (Ref. 5) for a perfect crystal at zero temperature. It is important

to obtain the temperature-dependent phonon spectrum, including vacancies

and interstitials that set in with temperature, and to see how the defects

modify the phonon spectrum and affect the lattice stability and, possibly,
melting of metallic hydrogen. Moreover, lattice defects are expected to

influence the superconducting properties of metallic hydrogen, as will be

discussed in Section V. For solid helium the problem is similar to the pas-

sage from perfect to imperfect classical solids (for an exhaustive summary

see Ref. 7), only that now a quantum solid is being considered. The two

types of defects, electronic excitations and lattice imperfections, differ

JPL Technical Memorandum 33-701 13



greatly in their activation energy (20 eV and fraction of an eV, respectively)

and hence deserve to b_e treated-d-i-ffe-r-ently -- The-f acf- that I attic e imperfec-

tions have low activation energies means that their concentration is greatly

temperature-dependent and so requires a statistical-mechanical treatment.

This is not so in the case of electronic excitations, which cannot be ther-

mally excited because their effective temperatures are of the order of 105 K,

enormous compared to the solid-helium temperatures of 5 10 K. For this

reason we shall treat electronic excitations as fixed, temperature-

independent impurities with a random distribution in the solid, characterized

only by an average concentration.

A. VARIATIONAL PRINCIPLE

The variational principle for the free energy (Eq. 9) was stated for the

canonical ensemble, in which the number of particles was fixed. To allow

for a variable number of defects we have to use the grand-canonical ensemble,

in which the number of particles (defects in our case) is allowed to vary.

The statistical quantities we need are defined as follows (Ref. 27). The

grand partition function is

-P(H- vNv- i.N.)

Z G = Tr e 1 (27)

where Tr means summation over the states as well as over the number of

vacancies and interstitials, and iv and ji are the chemical potentials asso-

ciated with these defects. The analog to the free energy is the thermo-

dynamic potential 2

= -kT in ZG (28)

while the density matrix, or statistical operator, is given by

1 - V(H- vNv 11iNi )

PG Z e
G

p(Q - H + vNv + iN i )

e14 L Technical Memorandum 33-701
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The average number of vacancies, for example, is given by

Tr N e v tiNi

(N v ) = Tr (Nv PG) Tr

Tr [e P(H - ,vNv - iNi ) ]

(29)

1 a -P(H- v N v - iNi )

fn Tr e
P av

aQ
a[v

and, similarly

<N.> (30)

A variational principle will now be derived by relating the grand

canonical to the canonical quantities and using the variational principle for

the latter. For a system of N particles we have (Eq. 9):

N FN, trial F0, N + <H N  N0, N

and

-PFN
Z = e

The grand partition function is related to the canonical partition function

ZN by

e-P = ZG = 
e  N ZN = e N - FN

N N

JPL Technical Memorandum 33-701 15



Using the variational upper bound on F N we have

e- p- (FN, trial - IN) -e 2trial

N

This defines the variational principle for the thermodynamic potential:

trial - (FN,trial - LN)
trial P E

N

S -eP(F0 N +H N - H0,N - N)1 0,N(31)= -- c tin e (31)

N

In the case of our defect problem, N is the set of numbers of vacancies and

interstitials, N = N, N. , and N = vN v + N.. In what follows trialvaN v + ii trial

will be differentiated with respect to phonon frequencies to obtain self-

consistent phonons, with respect to effective equilibrium positions to find

the lattice relaxation due to defects, and with respect to the chemical poten-

tials to find the defect concentration (Eq. Z9).

B. DEFECT HAMILTONIAN

The first step in evaluating the thermodynamic potential is to write

down the Hamiltonian of the system in the presence of defects. The

Hamiltonian of a perfect crystal is

H = ti + - E  vij (i # j in the summation)

i ij

In the presence of the defects enumerated above (electronic excitations

and/or vacancies and interstitials) the Hamiltonian will be modified in two

important ways. First, the presence of electronic excitations drastically
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changes the interatomic potential between two atoms, one of which at least

is excited. The excited sites will be characterized by

(x) 1 site i excited

1 0 site i normal

The modified potential becomes

S(x) (x) (x) (x) + (x) (x) (32)
= v + 6v. x + (x - 2 x) . + 6v . (32)

ij vi3 i j

where

6v.. = vg x - v..1j 1J 1j

8'v.. = v.. - v..
1j 1J 1j

vgx is the potential between two atoms, one of which is electronically
xx

excited, and v is the potential between two electronically excited atoms.

For helium, for example, both vgx and vxx are available from extensive

quantum-chemical calculations (Refs. 28 and 29). The potential u.. was
Ij

constructed in such a manner that when one atom is excited u.. = vgx, and
xx ij

when both are excited u.. = v1j

To describe the effect of missing or superfluous atoms we similarly

introduce

(V) I1 i occupied

i
i0 i vacant

(i) I i' vacant

= l 0 i' occupied
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(v) l (v) 0 i occupied

1 i vacant

(i) (i) 0 i' vacant

- Pi 1 i' occupied

The superscripts (v) and (i) stand for vacancies and interstitials, and the

primed index runs over interstitial sites. The modified Hamiltonian can be

written as

H (v) + i) I) E u1 (v) (v)E = ti i E 2 u i
i i' ij

+ u Gi a(i) + P. _ p + uL 2 (2+E 'j P u 2 E u ij Pi Gj ui P
i'j' ij i'j

The first two terms are the kinetic energies of the occupied regular sites

and of the interstitial sites, respectively. The third term is the potential

energy between the regular sites and the fourth term between two inter-

stitials. The last two terms describe the potential between one regular

site and an interstitial, and are obviously equal to each other. This way

of writing the Hamiltonian is very similar to that of Aksenov (Ref. 9), who

treats vacancies in quantum solids. Our work differs from his in three

important aspects. First, he considers vacancies only, and no interstitials.

Secondly, he uses the canonical distribution throughout, while it seems to

us essential to use the grand-canonic ensemble when the number of particles

varies. Third, Aksenov does not include lattice relaxation around defects

that can be incorporated in our formalism. Such lattice relaxation effects

are expected to be very important in solid helium.

We next express the p's in the Hamiltonian in terms of the correspond-

ing 0-'s and partition the Hamiltonian into lattice and defect parts:

H = Hlatt + Hdef (33)
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Hatt ti + E uij (34)

Hdef ti '  ti i'j' 1 3P
i' i i'j'

E ij (1 I E - + a

ij' ij

(35)

The defect Hamiltonian is the a-dependent part of the Hamiltonian and

obviously vanishes for a- = 0, i.e. , in the absence of defects.

In the variational principle (Eq. 31) we choose as H 0 the harmonic

part of the lattice Hamiltonian, so that

(H - H0> = Hlatt - H> 0 + Hdef> 0 (36)

The "perturbation" Hamiltonian consists of two parts, the effective anhar-

monicity of the perfect crystal and the average defect Hamiltonian. As we

will see, the first term contains the self-consistent phonons previously

derived, as well as the modification due to electronic excitations (through

the modification of the potential, Eq. 32). The second term contains the

effect of vacancies and interstitials. The average in<H def consists of two

parts, the average of the kinetic and potential energy operators over the

density matrix of harmonic oscillators, and the summations of the linear

and quadratic terms in the a- 's over N and N.. As a result we have

vJPL Technical Memorandum 33-701 19
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i'j'

+ -  (1 - ( )) <Uij,> - (v) (2 - <uij> (37)

ij' ij

where a-() and a(i) are the average vacancy and interstitial concentrations.

It should be pointed out that in passing from Hdef to <(Hdef> one

obtains a translationally invariant defect Hamiltonian, thereby suppressing

all information about the localized nature of the defect. A more rigorous

description of a finite defect concentration would be provided by a scheme

such as the coherent potential approximation. The discussion in Subsection

C below is kept general in that translational invariance of the lattice is not

assumed. Calculations will be carried out in the low-defect concentration

approximation when only linear terms in oa(v) and a-(i) are retained

(Hdef> (i) _ a-(v)) <T> (i) ij - a (v) <Uij

ij, ij

(38)

N - N N. N

ij, ij
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This form is next substituted in the variational principle, Eq. (31), resulting

in

1 -P(FO + <Hlatt - HO)) -PN + C ij ,> -

Otrial = - n E e e
N v,N.

PN V + <> +

Se 1ij

(39)

- + ( ui j -

= F + <Hatt - H 0 >+ in i - e

P + <uii> +

+ P-I n 1 - e

This derivation seems somewhat inconsistent. On the one hand, only linear

terms in N and N. were retained due to the assumption. of few defects. On
V 1

the other hand, the summation was performed over all values, from 0 to co,

using the well-known sum of a geometric progression. In the Appendix we

start from the total defect Hamiltonian Eq. (37) rather than Eq. (38), derive

an integral representation for the trial thermodynamic potential, and show

that in cases of interest to us the result reduces to Eq. (38).

The first two terms in Eq. (38) describe the variational free energy of

a crystal with some fixed, localized electronic excitation, and will be con-

sidered in the next subsection. The last two terms are the contribution of

interstitials and vacancies, and will be considered later.

C. ELECTRONIC EXCITATIONS AS DEFECTS

The first two terms in Eq. (39),

Ftrial = F0 +<U - U 0 >
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are of the same form as the variational free energy of a perfect crystal.

-Denotin-g the n-ormal modes by-wv, we-obtain -f-rom the-previous- section- by

minimizing the free energy with respect to the normal mode frequencies,

the basic equation of lattice dynamics

2 a 2U

MeW = n q (40)

Despite the formal similarity, Eq. (40) differs from the equation for a per-

fect crystal in that the potential U is modified close to electronically excited

sites, as described by Eq. (32). As a result of different potentials between

different pairs of atoms, there is lattice relaxation around the defects. The

lattice loses its periodicity, and we can no longer use the translational

symmetry to simplify Eq. (40). The normal modes w v differ from those

of the perfect crystal, both in their values and in the appearance of localized

frequencies not present in the perfect crystal.

The most convenient approach to Eq. (40) is to write U as the perfect

crystal potential V plus a correction term, thus enabling one to use the

well-known solution of the perfect crystal as a basis for the defect problem

(Ref. 7). As we shall shortly see, the correction terms in the resulting

equation for the normal modes can be characterized by a defect matrix,

consisting of deviations in mass and in force constants (i.e., interatomic

forces) from the corresponding values of a perfect crystal. For a quantum

solid the first type of defect has been discussed by Varma (Ref. 8), who

considered a single isotopic substitution, while we consider here a change

in the interatomic potential. Although we expect more drastic effects due

to electronic excitations (not unlike bubbles in liquid helium with electronic

excitations) than due to an isotopic substitution, the formal approach to both

problems is rather similar, as we now proceed to show.

Looking at electronic excitations, we can consider either a single

excitation at the origin or a finite concentration of randomly distributed

electronic excitations. In the first case the formulation becomes practically
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identical to that of Varma (Ref. 8). Of considerably greater practical inter-

est is the second case, which we now examine. By Eq. (32) we can rewrite

Eq. (40) in the form

2 82V 26V 2 82 6'V
MW - a = 20- (1 a a) a+ a- z a 2V (41)

aqv 8qa qv aq qv aqv

where a- is the concentration of electronic excitations. The left-hand side

looks like the expression appearing in the perfect crystal equation, but this

is not quite the case. The potential is evaluated at relaxed lattice positions,

R + 6R. + u, where the R are the equilibrium positions of atoms in the
o O

undistorted lattice, 6R are the lattice relaxation displacements due to the

defects considered, and u are the phonon displacements. We can write

V(RO + 6R + u) = V(R 0 + u) + V(R 0 + 6R + u) - V(R 0 + u)

= V(R 0 + u) + AV = Vnd + AV

where AV is the distortion potential due to lattice relaxation, and Vnd is

the undistorted lattice potential. Equation (41) can now be written in the

form

aq aq aq aq, q, , aq

(42)

It is convenient to transform from normal modes to atomic

displacements

u. = aT. q
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Because of the lattice distortion the T. do not possess translationalla v
symmetry andwec-annot introduce polarization vectors, as we did f-or--pe-r-

fect crystals. The T.iv have the orthogonality and closure properties

T v TI. = 6
1aV 1aV, VV

The second derivatives in Eq. (42) become

2 2
= T. Ta

Siav jiv au. au8qv 8q ia,jp 1a j3

Using the orthogonality, Eq. (42) can be rearranged to read

2 a aVd iaT-M0 T + au au T = T(43)

P a jj

where C is the defect matrix for the problem

C - a2 (- 1) 5V - 6'V - AV (44)
j ui. u

For a vanishing defect matrix the problem reduces to that of a perfect

crystal. The defect matrix consists of two parts, one due to the modified
interatomic potentials, and the second due to the deviation of the distorted
lattice potential from the undistorted one.
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Equation (43) is conveniently solved in terms of classical Green

functions, defined as solutions to Eq. (43) with the right-hand side replaced

by a 6-inhomogeneity,

2 ic Vd ja ) 6a
aia a u-Mwe gly . u. 1u. y (wv) = 1y

It can be seen, by direct substitution, that the Green functions are given by

T. (kX) :(k%)
( ia (Wy) = E (45)gj(w - 2 2

kX wkX -V

where wkk are the normal modes of the perfect crystal, and Ti.(kX) are the

corresponding eigenvectors, related to the polarization vectors by

T. (kk) - 1 e (kk) eikR
,N/NM

Knowing the Green functions, it can again be verified by direct substi-

tution that the solution to Eq. (43) can be written as

Tiv = g' (w,) C Tlyv
jI
ly

This can be regarded as the matrix equation

(1 - g C) T = 0

solved by diagonalizing the product of the Green and defect matrices

det 6 - g (wV) C 0 (46)
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Unlike the secular equation of a perfect crystal, whose size is determined

__geometrically by the number_of vibrational _degrees of freedomper unit cell,-

the size of this equation is determined physically by the number of neighbors

affected by the defect.

Finally, the lattice distortion 6R can be determined by varying the

free energy with respect to 6R:

F trial = F 0 - <H> + <Hlatt (R + 6R + u) + Hdef (R 0 + 6R + u)>
0 0

Only the last two terms include the lattice distortion, and imposing the

condition 3F trial/ 6R = 0 results in an equation similar to that derived by

Varma (Ref. 8).

D. VACANCIES AND INTERSTITIALS

For this problem we have to include the last two terms in Eq. (38)

that were not considered so far. The self-consistent phonons will be deter-

mined from the condition

trial

awv

We conveniently define

N E , - i

E. = e
1

N N E <uij> +

E =e j
v
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Differentiation gives

2 trial _Ftrial Ei 1 a T> ++ T+ < >1, -E. N a

l-Ev 1(a > + a Ku..>)
ij

The derivatives required here are all available in the previous section for

the perfect crystal. They are

trial _h w w 1 1/ 2Uctgh + 2 q

<T>_ th v v 1

ao v  4 2 sinh2 2

a - h (ctgh -- _ - + -- t a2

aw 2M w_S2M sinh2 aqv aq

U.nt denotes the interaction between regular lattice sites and interstitial

sites. Defining the function sinhc x = (sinh x)/x, we collect and rearrange
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all terms. The resulting self-consistent phonon equation in the presence of

defects is ..

2 E. 2 E

; q 1 v q2U 2 v i /qvi3 E v < v2U .,7

mw = sinhc Phw 1 E. E (47)

N sinhc Phw + 1 - E. 1

We next evaluate the average number of defects from relations Eqs. (29)

and (30):

an ES= -trial v (48)<Nv> a 1 - Ev - v

<N> = - trial E.(49)
Ni a . 1 - E. (49)

i 1

Substituting these results into Eq. (47), we can write the self-consistent

phonon equation in terms of the vacancy and interstitial concentrations:

/ 2 vU/a 2 +t (v) 2 U

2 aq + 2--(i)/ v a U

M q
1 + ((i) (v) sinhc phcw - 1

sinhc phw + 1

2U + sinhc phw2 _ _ __ (50)

8 PL T n(i) 2 aM r a sinhc phwu +1

+ sinhe p3ho + 1 ]gqa
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This equation can be treated by the classical Green function technique

described in the previous subsection. The quantities appearing here, par-

ticularly the defect concentration, depend on the chemical potentials Ii and

[v that are not yet determined. One way to determine then is to compare
Eq. (48) and Eq. (49) with

-AE /kT -AE./kT

(N )= e , (N.)= e

where AEv, AE. are the activation energies of vacancies and interstitials,1

and thus relate the chemical potentials to the activation energies.

IV. SOLID HELIUM

In this section we discuss the relevance of phonons to the study of

electronic excitations in solid helium. Our attention will be exclusively

devoted to the 2 S metastable excitations of helium because only they have

a sufficiently long lifetime to be studied conveniently experimentally. In

fact, as noted in the Introduction, the long lifetime and the high excitation
3

energy of the He(2 S) - He state provide the major motivation for the study

of electronically excited helium, for eventual energy-storage applications.

A. -MEASUREMENT OF He' CONCENTRATIONS

An excited atom in the solid-helium lattice can be regarded as a defect

or an impurity. As such, it produces a static lattice distortion in its imme-

diate neighborhood and thereby leads to a modification of the phonon spec-

trum. The lattice distortion is expected to be quite substantial, in analogy

to the case of liquid helium where "bubbles" or cavities around excited

atoms are known to exist, with estimated bubble radii of the order of 7 A,

as compared to the mean interatomic distances of about 3. 5 A (Ref. 30).

Both the static lattice distortions and the vibration of normal and excited

helium atoms about the distorted equilibrium positions are treated self-

consistently, at any temperature, by the formalism of the last section.

Knowledge of the phonon spectrum of an imperfect solid-helium crystal,
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together with sound attenuation measurements in the crystal, may provide

a viable technique for determining the concentration of He atoms insolid

helium, as we shall now discuss.

It is known that the presence of impurities in an otherwise perfect

crystal leads to scattering and attenuation of sound waves propagating in

the lattice. For sufficiently low-impurity concentrations, attenuation of

sound waves is essentially proportional to the impurity concentration,

although nonlinearities are expected to complicate matters at higher con-

centrations. Analogously, by measuring the attenuation characteristics of

sound waves in an electronically excited solid-helium crystal, one is

expected to obtain information about the excited-state concentration. Exper-

imental techniques for making such measurements on ordinary crystals with

impurities are well established. There appear no major obstacles in apply-

ing them to solid helium. To interpret sound-attenuation experiments, one

must know the effect of excited-state impurities on the propagation of sound

waves in solid helium. The work on the phonon properties of solid helium,

reported here, is being extended to deal with this problem.

Present experimental techniques for measuring sound attenuation in

imperfect crystals are quite accurate and the errors in determining per-

centage impurity concentrations are of the order of 0.01, for concentrations

not exceeding 10%. It is expected that comparable accuracies can be

achieved in the solid-helium case. It should be stressed that at present

there is no r-eliable method of estimating excited-state concentrations in

solid helium (Ref. 31) and that therefore sound-attenuation techniques are

expected to find an important application in this area.

B. DEEXCITATION PROCESSES

According to theoretical estimates (Refs. 32 and 33), an isolated He

atom has a lifetime of some 2.3. h. In a solid-helium crystal, the lifetime

of the He atom is generally expected to be shorter in view of various per-

turbations acting on the atom that tend to facilitate its transitions to the

ground state. A case where an analysis of lattice perturbation effects has

been performed is that of the excited N N(2p 3 2D) state in a lattice of N 2

molecules (Ref. 34). The results of this analysis show that indeed a rather
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drastic reduction of the N lifetime is caused by lattice perturbations. The

case of solid helium is sufficiently different to require independent consider-

ations, although one might a priori expect lifetime shortening effects here,

too.

The mechanisms by means of which an He atom may lose its excita-

tion are quite numerous.. Some of the more important ones are:

(1) increased spin-orbit mixing (and thereby enhanced radiative decay)

caused by the presence of neighboring atoms, (2) He migration in the

crystal and subsequent "collisional" He -He deexcitation, (3) formation of

He -He molecules or other complexes having shorter lifetimes, (4) radia-

tionless deexcitation into phonons, and (5) loss of electronic energy in

exciting vacancies and interstitials in solid helium.

To be able to discuss these various processes quantitatively, one

must know how electronic excitations modify the static solid-helium lattice

and how they couple to the lattice vibrations, i.e. , phonons. The formal-

ism presented in Section III has been developed for the purpose of supplying

this information. Here we shall briefly outline how the static and dynamic

properties of the lattice enter into the calculations of some of the above

decay processes.

The fact that an He atom has spin 1 and that, apart from spin-orbit

terms, the Hamiltonian is spin independent means that the only way He in

a solid-helium lattice can decay is either by the action of spin-orbit forces

or by mutual deexcitation with another He atom. Spin-orbit perturbations

lead to both radiative and radiationless decays. In the case of radiationless

decays the electronic excitation energy of an He atom is dumped into

phonons to appear ultimately as heat. For energy-storage applications, it

is extremely important that such radiationless He decays have very low

probability. Estimates of matrix elements for these decays, at various

temperatures, will be made on the basis of numerical calculations of self-

consistent phonons.

Although radiative decays seem to represent another clear-cut loss

mechanism of He atoms, it must be borne in mind that phonons emitted by

the decay of He atoms may become trapped or reabsorbed as they propa-

gate through the crystal, so that, effectively, energy is retained in a useful
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form. In fact, the photon concept may lose its meaning in a crystal, since

photons are known to couple to electronic excitations (or excitons) in crys-

tals to generate new types of excitations, the polaritons (Refs. 35 and 36).

To study the various possibilities, a knowledge of the thermally-averaged

dielectric properties of solid helium is essential. A calculation of the

dielectric constant of solid helium, based on the self-consistent phonon

formalism, is being undertaken for this reason.

It is well known that electronic excitations, even the well localized

ones, are able to migrate in crystals (see a discussion in Ref. 37). The

mechanism for this migration is provided by resonant electronic interaction

between neighboring excited and normal atoms. It is expected that in solid

helium the migration of 23S excitations can well be represented by an effec-

tive hopping Hamiltonian with parameters determined by evaluating

thermally-averaged matrix elements of the He -He exchange interaction.

Using this effective Hamiltonian, one should be able to compute the proba-

bility of He -He collisions, for given He /He concentration, and thus to

estimate the collisional loss rate of He atoms, on the assumption that a

near-neighbor collision of two He atoms is certain to lead to their deexcita-

tion. In experiments with liquid helium, it has been found (Ref. 38) that

activation of rotons and the presence of impurities independently tend to

inhibit excited bubble collisions and so to lengthen the lifetimes of excited

bubbles. It is interesting to speculate about possible ways of inhibiting

"bubble" collisions in solid helium.

V. METALLIC HYDROGEN

In all cases where metallic hydrogen is believed to exist, i. e. , in the

interior of Jupiter and in shock-wave experiments (Ref. 39), it is found at

elevated temperatures, close to or above the melting temperature. Thus,

from an experimental point of view, it is important to undertake studies to

understand the physical properties of metallic hydrogen at finite, nonzero

temperatures. These studies would also constitute a first step for future

considerations of liquid metallic hydrogen. In view of the semiquantum

nature of metallic hydrogen (Ref. 5), vacancies and interstitials are expected

to have a dramatic effect on such properties of metallic hydrogen as lattice

stability, melting, and superconductivity, to be discussed next.
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A. LATTICE STABILITY AND MELTING

The effect of static vacancies was considered by Aksenov (Ref. 9) who

performed some simple model calculations for quantum solids. He obtained

phonon softening due to vacancies. Also, in some of his calculations, lattice

instability, characterized by at least one of the lattice frequencies becoming

imaginary, occurred at vacancy concentrations as low as 5 to 10%. We

intend to perform more realistic and complete calculations for metallic

hydrogen, including also interstitials and their effect on lattice relaxation.

It is known that in some cases (Ref. 40) interstitials cause a much larger

lattice relaxation than vacancies, and therefore are of crucial importance

in the study of defect effects. Not much is known about the relative impor-

tance of vacancies and interstitials in metallic hydrogen, and this will be

one of the first questions to be investigated in our studies.

In many solids the lattice instability due to defects occurs at tempera-

tures well above the melting temperature, and so is of no particular conse-

quence. However, in metallic hydrogen there are indications that the

situation is quite different. In a recent study of metallic hydrogen, Caron

(Ref. 5) estimated a melting defect temperature, defined as the temperature

at which the Boltzmann factor of the defect activation energy is of the order

of 0. 1, corresponding to the maximum volume fraction of defects that the

crystal can tolerate before vacancies and interstitials spontaneously

recombine. For pressures of the order of the pressure at which a phase

transition from molecular to metallic hydrogen is estimated to occur, the

melting defect temperatures were found to be comparable to the ordinary

melting temperatures of metallic hydrogen derived from other simpler

models (Refs. 41 and 42). This implies that in metallic hydrogen the defects

may well constitute the primary melting mechanism.

Another aspect of finite-temperature defects is worth noticing. While

solid helium is a true quantum solid, metallic hydrogen is probably halfway

between a quantum and a classical solid, as noted earlier. As a result,

zero-temperature defects are expected to be static, and phonons are prob-

ably the only low-temperature excitations. With increasing temperature

both the number and mobility of defects increase, and it may be necessary

to treat them as another type of excitation, similar to the vacancy waves

(or vacancions) in solid helium (Refs. 10 through 13).
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B. SUPERCONDUCTIVITY

Metallic hydrogen is believed to be a high-temperature superconductor

(Refs. 3 and 4). The available estimates place the superconducting transi-

tion temperature Tc in the range 100 to 300 K. However, it should be

noted that these estimates have been made on the basis of the simple BCS-

type formula and McMillan's subsequent generalization (Ref. 43) for Tc

and they do not take into account either finite-temperature effects or the

expected modifications caused by defect excitation. Now it is quite well

established that defects and impurities in ordinary superconductors often

have a drastic effect on Tc, either lowering it (usually) or raising it, and

sometimes even causing oscillations in Tc with increasing defect concentra-

tion. In any reliable estimate of T for metallic hydrogen, it is therefore

essential to include the defect effects. A first guess might be that defects

cause phonon softening in metallic hydrogen, thereby reducing the Debye

temperature and the electron-phonon coupling constant, and thus, by the

BCS formula for Tc, lead to a depressed transition temperature. With the

detailed phonon spectrum to be evaluated, it will be possible to test this

guess and, with the help of a theory of electron-phonon interactions for

disordered structures (Ref. 44), to explicitly compute the changes of the

superconducting transition temperature caused by the defects.
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APPENDIX

We provide here an integral representation for the variational thermo-

dynamic potential, involving the full defect Hamiltonian (Eq. 37) rather than

its linear approximation. Mathematically this involves replacement of the

geometric series used in Eq. (39) by a sum of the form

S aN - bN 2  e aN 1 -t - 2ibtNe- = e e dt

N N -C

dt e 2 e ( - a - 2i Vbt)N (A-1)

CN

1 -t 1
dt e

- fI - e - (a+ Zi vt)

or, in real form

2 -t e 2  1 - e cos 2 t (A-dt e (A-2)
S1 + e - 2e-a cos 2 -t

For b = 0 this reduces, of course, to the geometric series.

The thermodynamic potential is slightly more general, as it involves
summation over the two variables N = N 1 and N. = N 2 . The preceding pro-
cedure can be generalized to
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2 2

-aN - 1] bijN. N

Se i=l ij 1

NN
1N 2

f2 2 (a.t. + c.) N. - 2yti2
S dt 1 dt2 e e (A-3a)

N1N2

2t 2 -yt t

= dt dt e +(A-3b)
TT() 1 2 2a + 2a22+c2

The five constants a., c., and y can be determined in terms of the five a.,
1 1 1

b.. by performing the t-integration in Eq. (A-3a) and comparing with the

original equations. The calculation is straightforward, though somewhat

tedious, and gives

b
b12

c. = -a. , = -
1 1 2 b1 1b2 2

2 2
b -4b b b -4b b

2 12 11 22 2 12 11 22
al = 4b2 2  ' a2 4b 1 1
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Hence,

- aiN -E bijNiN

e i ij

N1N 2

2 ' + t2 b12 t1t2

b e

-4b 2 dt dt

12 -1122 b2-b11b22
b 22 b 1 a al bl t2 a 2

-1 - e b 1 - e

(A-4)

or, in real form,

-t 2 + t (1 - A 1x I ) (1 - A 2 x 2 ) cosh 2yt 1 t 2 - A 1A 2Y 1y 2 sinh 2yt 1 t

1 J1 - 2A 1X + A 1 (1 - 2A2x + A

where

-a.

A. = e
1

x. cos

SZ b i(l -y.) t
Yi. sin

Finally, what is the difference between the full expression Eq. (A-2)

and the approximate value used in the text for b = 0? To answer this, we

consider the difference between the two corresponding integrands
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e-a cos 2 bt 1
-2a -a -a

1 + e - e cos 2 b t 1 - e

1 (e-a+ e-2a)(cos 2 t - 1) f
-a -Za -a os -a

1-e 1+e -2e cos2Vbt -e

The approximation is justified if f << 1. For low temperatures, a (which is

proportional to 1/kT by Eq. 39) is large and, consequently,

-a -2a
f -e +e «1

For high temperatures, b is small (b is obtained from the quadratic terms

in the full defect Hamiltonian Eq. (37)), cos (2 JVr t) - 1 - -2bt 2 , and the

contribution to the integral is again small. This brings us back to the low-

defect approximation in which the b.. are neglected from the beginning. If

necessary, however, one can start from the more rigorous Eq. (A-4).
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